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Abstract

Recent research indicates that pretraining cross-
lingual language models on large-scale unlabeled
texts yield significant performance improvements
over various cross-lingual and low-resource tasks.
Through training on one hundred languages and
terabytes of texts, cross-lingual language mod-
els have proven to be effective in leveraging
high-resource languages to enhance low-resource
language processing and outperform monolingual
models on low-resource languages. In this paper,
we further investigate the cross-lingual and cross-
domain setting when a pretrained cross-lingual
language model needs to adapt to new domains.
Specifically, we propose a novel unsupervised
feature decomposition method that can automati-
cally extract domain-specific features and domain-
invariant features from the entangled pretrained
cross-lingual representations given unlabeled raw
texts in the source language. Our proposed model
leverages mutual information estimation to decom-
pose the representations computed by a cross-
lingual model into domain-invariant and domain-
specific parts. Experimental results show that our
proposed method achieves significant performance
improvements over the state-of-the-art pretrained
cross-lingual language model.

1 Introduction

Recent progress in deep learning benefits a variety of NLP
tasks and leads to significant performance improvements
when large scale annotated datasets are available. For high-
resource languages, e.g., English, it is feasible for many tasks
to collect sufficient labeled data to build up deep neural mod-
els. While for many languages, there might not exist enough
data in most cases to make full use of the advances of deep
neural models. In view of this situation, various cross-lingual
transfer learning methods are proposed to utilize labeled data
from high-resource languages to construct deep models in
low-resource languages [Kim ef al., 2019; Lin et al., 2019;
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He et al., 2019; Vulic et al., 2019], among which, most cross-
lingual transfer learning researches focus on mitigating the
discrimination of languages while leaving the domain gap
less explored. In this study, we concentrate on a more chal-
lenging setting, i.e., cross-lingual and cross-domain (CLCD)
transfer, where in-domain labeled data in the source lan-
guage is not available.

Conventionally, cross-lingual methods mainly rely on ex-
tracting language-invariant features from data to transfer
knowledge learned from the source language to the target lan-
guage. One straightforward method is weight sharing, which
directly reuses the model parameters trained on the source
language to the target language by mapping input text to a
shared embedding space beforehand. However, previous re-
search [Chen et al., 2018] revealed that weight sharing is
not sufficient for extracting language-invariant features that
can generalize well across languages, as a result of which
a language-adversarial training strategy was proposed to ex-
tract invariant features across languages, using non-parallel
unlabeled texts from each language. Such strategy performs
well for the bilingual transfer setting but is not suitable for ex-
tracting language-invariant features from multiple languages
insomuch as features shared by all source languages might be
too sparse to retain useful information.

Recently, cross-lingual language model pretraining meth-
ods at scale, e.g., multilingual BERT [Devlin et al., 2019],
XLM [Lample and Conneau, 2019; Conneau et al., 2019],
show very competitive performance over various cross-
lingual tasks and even outperform pretrained monolingual
models on low-resource languages. Through employing par-
allel texts (unlabeled for any specific task) and shared sub-
word vocabulary over all languages, these pretrained cross-
lingual models can effectively encode input text from multi-
ple languages to one single representation space, which also
refers to a feature space shared by multiple languages (more
than one hundred). While generalizing well for extracting
language-invariant features, cross-lingual pretraining meth-
ods have no specific strategy for extracting domain-invariant
features. In our CLCD setting, both domain-invariant and
language-invariant features are need to be extracted.

To address the aforementioned limitation of cross-lingual
pretrained models [Conneau er al., 2019] in CLCD scenarios,
we propose an unsupervised feature decomposition (UFD)
method, which only leverages unlabeled data in the source



language. Specifically, our proposed method is built on top
of the recently proposed unsupervised representation learn-
ing method [Hjelm et al., 2019] and can simultaneously
extract domain-invariant features and domain-specific fea-
tures by combing mutual information maximization and min-
imization. Compared with previous cross-lingual transfer-
ring methods, our proposed model maintains the merits of
cross-lingual pretraining models, i.e., generalize well for over
a hundred languages, and only needs unlabeled data in the
source language for domain adaptation, which is suitable for
more cross-lingual transfer scenarios.

We evaluate our model on a benchmark cross-lingual sen-
timent classification dataset, i.e. Amazon Review [Pretten-
hofer and Stein, 20101, which involves multiple languages
and domains. Experimental results indicate that, with the
enhancement of the pretrained XLLM cross-lingual language
model, our proposed UFD model (trained on some unlabeled
raw texts in the source language) along with a simple linear
classifier (trained on a small labeled dataset in the source lan-
guage and the source domain) outperforms the state-of-the-art
models that have access to strong cross-lingual supervision
(e.g., commercial MT systems) or labeled datasets in mul-
tiple source languages. Furthermore, through incorporating
our proposed unsupervised feature decomposition strategy, a
raw text dataset with 150k instances in the source language
leads to continuous gains over the strong pretrained XLM
model that is trained on one hundred languages and terabytes
text. Extensive experiments further demonstrate that unsu-
pervised feature decomposition upon pretrained cross-lingual
language model outperforms pretrained domain-specific lan-
guage model trained on over 100 million sentences.

2 Related Work

Cross-lingual transfer learning (CLTL) has long been inves-
tigated [Yarowsky et al., 2001] and is still one of the fron-
tiers of natural language processing [Chen er al., 2019].
Through utilizing rich annotated data in high-resource lan-
guages, CLTL significantly alleviates the challenge of scarce
training data in low-resource languages. Conventionally,
CLTL mainly focuses on resources that are available for
transferring, e.g., collecting parallel data between two lan-
guages to directly transfer model built in rich resource lan-
guage to the low-resource one [Pham et al., 2015], con-
structing annotated data in the target language by machine
translation systems [Xu and Yang, 2017]. Later on, with
the prosperity of deep learning, representation-based meth-
ods are proposed to model cross-lingual transfer learning in
the feature space. Cross-lingual word embeddings learned
the shared representation space at the fundamental level and
can benefit various downstream tasks [Artetxe et al., 2018;
Conneau et al., 2018al. Later, the cross-lingual sentence rep-
resentation learning method is also proposed for cross-lingual
transferring [Conneau et al., 2018b]. Chen et al. [2018]
designed a language-adversarial training strategy to extract
language-invariant features that can directly transfer to the
target language.

Another direction for cross-lingual transfer learning is the
recently proposed cross-lingual [Lample and Conneau, 2019]

or multilingual language model pretraining methods [Devlin
et al., 2019]. Benefiting from the large scale training texts
and model size, these pretraining methods have changed the
phase of cross-lingual transfer learning. Empirical results
demonstrate that representations space shared by one hundred
languages can significantly outperform the language-specific
pretrained models [Conneau er al., 2019]. As language ad-
versarial training will lead to sparse language-invariant rep-
resentations when multiple languages are involved in cross-
lingual transfer [Chen et al., 2019], we follow the line of
cross-lingual language models. Unlike previous cross-lingual
language model pretraining methods, we focus on the domain
adaptation of these pretrained models. To maintain the gen-
eralization ability of the cross-lingual pretrained model, we
mainly consider the unsupervised domain adaptation setting.
The most related work to us is proposed for unsupervised rep-
resentation learning [Hjelm ef al., 2019], which is primarily
for visual representation learning.

3 Model

In this section, we first define the problem discussed in this
paper and then describe the proposed method in detail.

3.1 Problem Definition & Model Overview

In this paper, we consider a setting where we only have la-
beled set D , of a specific language and a specific domain
which we call source language and source domain, and we
want to train a classifier to be tested on set D, ; of a differ-
ent language and a different domain which we call target lan-
guage and target domain. We also assume access to some
unlabeled raw data D ; of the source language and the tar-
get domain at the training phase, which is usually feasible
in practical applications. We call this setting unsupervised
cross-lingual and cross domain (CLCD) adaptation.

As illustrated in Figure 1, the proposed method consists
of three components: a pretrained multilingual embedding
module which embeds the input document into a language-
invariant representation, an unsupervised feature decomposi-
tion (UFD) module which extracts domain-invariant features
and domain-specific features from the entangled language-
invariant representation, and a task-specific module trained
on the extracted domain-invariant and domain-specific fea-
tures. We adopt XLM' [Lample and Conneau, 2019] as
the multilingual embedding module in our method, which
has been pretrained by large-scale parallel and monolingual
data from various languages and is the current state-of-the-
art cross-lingual language model. We describe the other two
components and the training process in following subsec-
tions.

3.2 Unsupervised Feature Decomposition

Mutual Information Estimation
Before elaborating on the proposed unsupervised feature
decomposition module, we first present some preliminary

"The latest version XLM-R is adopted, which is trained on over
one hundred languages and 2.5 terabytes text.
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Figure 1: Our unsupervised domain adaptation model, where Min-
MI and Max-MI refer to MI maximization and minimization. The
middle-left part is the feature extractor F; and the right is F,.

knowledge on mutual information estimation, which is em-
ployed in the training objectives of UFD. Mutual informa-
tion (MI) is growing in popularity as an objective function
in unsupervised representation learning. It measures how in-
formative one variable is of another variable. In the context
of unsupervised representation learning, MI maximization is
usually adopted such that the encoded representation max-
imally encodes information of the original data. MI is ex-
tremely difficult to compute, particularly in continuous and
high-dimensional settings, and therefore various estimation
approaches have been proposed.

In our method, we adopt a recently proposed neural estima-
tion approach [Belghazi et al., 2018], which estimates MI of
two continuous random variables X and Y by training a net-
work to distinguish between samples coming from their joint
distribution, J, and the product of their marginal distributions,
M. This estimation utilizes a lower-bound of MI based on
the Donsker-Varadhan representation (DV) of KL-divergence
[Donsker and Varadhan, 1983],

I(X;Y) := Drr(J|M) > ZPV (X;Y)
1= Ey[T(z,y)] — log Eyle™ )]

where T, is a discrimination function parameterized by a
neural network with learnable parameters w. It maps a sample
from space X x Y to a real value in R. Through maximiz-
ing ZPV, T,, is encouraged to distinguish between samples
drawn from J and M by assigning the former large values
while the latter small ones.

Proposed Method

Let X € R? denote the language-invariant representations
generated by the pretrained multilingual embedding module.
It is then feeded into the proposed UFD module as input. As
shown in Figure 1, we introduce two feature extractors: the
domain-specific extractor F, (i.e. the two-layer feedforward
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network with ReLU activation on the right), and the domain-
invariant extractor F (i.e. the two-layer network on the left).
We denote the extracted features as F,(X) and F,(X) re-
spectively. Note that for F;, we add residual connections to
better maintain domain-invariant attributes from X.

Specifically, F, aims to extract domain-invariant features
from the language-invariant representation in an unsuper-
vised manner. Since the multilingual embedding module is
pretrained on open domain datasets from over one hundred
languages, presumably, the generated language-invariant rep-
resentations should contain certain attributes that can be gen-
eralized across domains and this part of knowledge should be
maximally maintained in the extracted domain-invariant fea-
tures. Therefore, the language-invariant representations can
serve as feedback signals for training F; by maximizing MI
between its inputs and outputs. In this way, F; is forced to
pass useful information from the language-invariant represen-
tations X to the domain-invariant features F,(X).

We utilize the neural network-based estimator as presented
in Equation (1) for computing ML In our case, as F5(X) is
dependent on X, we can simplify the DV-based MI estimator
to a Jensen-Shannon MI estimator as suggested in [Hjelm et
al.,2019]:

TSP (X3 Fo(X) = Bel-sp(~Tu(, Fy(2)))]
— By s[sp(To (2, Fi(2)))]

where x is an input embedding with empirical probabil-
ity distribution P. As F,(z) is directly computed from =z,
(x, Fs(x)) can be regarded as a sample drawn from the joint
distribution of X and Fy(X). z corresponds to an input

embedding from P = P, ie., x is computed from a ran-
dom sample drawn from the same input distribution, such that
(z', Fo(x)) is drawn from the product of marginal distribu-
tions. sp(z) = log(1+ e7) is the softplus activation function.
The training objective of F; is to maximize the MI on X and
Fs(X) and the loss is formulated as follows:

Ly(ws, ) = —I79P (X, Fo(X)) 3)

where ws denotes the parameters of the discrimination net-
work in the estimator and v, denotes the parameters of Fj.
To facilitate domain-invariant features learning, we also pro-
pose to maximize the MI on F,(X) and the corresponded in-
termediate representation (first layer output) F.(X), and the
training loss is as follows:

Lo (wr,s) = —I79P(FL(X), Fo(X)) )

where w, denotes the parameters of the discriminator network
in the estimator.

Recall that the objective of F,, is to extract domain-specific
features, which is supposed to be exclusive and independent
of domain-invariant features. We propose to minimize the MI
between features extracted by F, and F,, and the training
loss is formulated as follows:

Lo (wp, s, ) = TP (Fo(X), Fp(X)) (5)

where 1, denotes the parameters of F),. w, denotes the pa-
rameters of the discrimination network in MI estimator.
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English
Datasets Book | DVD | Music
#Documents 8,898,041 1,097,592 1,697,533
#Sentences 101,061,948 16,447,191 21,062,292
#Words 1,302,754,313 | 194,145,510 | 277,987,802
Avg Length 146.4 176.9 163.8

Table 1: Statistics of domain-specific raw texts.

The training objective of the proposed UFD component is
thus to minimize the overall loss as follows:

Lurp = als+ BL, +7L, (6)

where «, f3, and y are hyper-parameters to balance the effects
of sub-losses.

3.3 Task-specific Module

In the task-specific module, we first employ a linear layer that
maps the concatenation of the domain-invariant and domain-
specific features in R?? into a vector representation in RY.
A simple feedforward layer with softmax activation is then
employed on this mapped vector representation to output the
task label. We train this module on D, ; and the cross-entropy
loss denoted as L; is utilized as the training objective.

3.4 Training

Note that the parameters of the multilingual embedding mod-
ule are pretrained and set to be frozen in the entire train-
ing process. /}Ne first optimize the parameters of UFD, i.e.,
{@s,Wr, Wp, Vs, 1, by minimizing Lypp on the unlabeled
set D, ;. Once the UFD module is trained, we fix its param-
eters and train the task-specific module by minimizing £; on
the labeled set Dy .

4 Experimental Setting

4.1 Datasets

We conduct experiments on the multi-lingual and multi-
domain Amazon review dataset [Prettenhofer and Stein,
20101, which serves as a benchmark in previous cross-lingual
sentiment analysis researches and also supports cross-lingual
and cross-domain evaluation. In details, this dataset com-
prises of four languages, i.e., English, German, French, and
Japanese, and each language contains three domains, i.e.,
Book, DVD, and Music. There are a training set and a test set
for each domain in each language and both consist of 1,000
positive reviews and 1,000 negative reviews.

In our CLCD evaluation, we treat English as the only
source language and attempt to adapt to the other three lan-
guages respectively. As each language contains three do-
mains, we can construct 3 x 2 CLCD source-target pairs
between English and a specific target language. Therefore,
we have 18 CLCD source-target pairs in total considering all
three target languages. At training phase, we first utilize some
unlabeled raw data from the source language and target do-
main for optimizing the proposed UFD. For example, if we
are adapting from English-DVD to German-Book, unlabeled
data in English-Book is utilized for training UFD. Then, the

training set from the source language and source domain is
used for training the task-specific module. At testing phase,
the model is evaluated on the test set of the target language
and target domain.

We draw samples from 3 larger unannotated datasets
of Book, DVD, and Music domains released in [He and
McAuley, 2016]. The statistics of the three datasets are given
in Table 1. We randomly sample 50K documents from each
domain as the unlabeled domain-specific set in the source
language (i.e. English) to be utilized at the training phase.
To encourage the domain-invariant extractor to learn domain-
invariant features, we utilize domain-specific unlabeled sets
from all domains (50K*3) in training UFD module. We also
show the change of model performance when varying the
number of unlabeled samples in Section 5.

4.2 Baselines

We denote our proposed model as XLM-UFD, and we com-
pare it with the following baselines:

CL-RL [Xiao and Guo, 2013] is a cross-lingual word rep-
resentation learning method, which learns the connection be-
tween two languages by sharing part of the word vectors.

Bi-PV [Pham et al., 2015] attempts to learn paragraph vec-
tors in a bilingual context setting by sharing the distributed
representations of unannotated parallel data from different
languages.

CLDFA [Xu and Yang, 2017] is a cross-lingual distillation
method which leverages a parallel corpus of documents. An
adversarial feature adaptation strategy is applied for reduc-
ing the mismatch between the labeled data and the unlabeled
parallel document.

MAN-MOE [Chen et al., 2019] addresses the multi-
lingual transfer setting, i.e., there are multiple source lan-
guages with labeled data. Building upon a language-
adversarial training module, this model utilizes a mixture-of-
experts (MOE) module to dynamically combine private fea-
tures of different languages.

The above four baselines were originally proposed for
adaptations in a cross-lingual setting, e.g. adapting from
English-Book to German-Book. We report their official re-
sults released in original papers, which can be regarded as
upper bounds for their CLCD performances. Note that the
setting of MAN-MOE is different, where N to 1 adaption is
performed, i.e. from N source languages to one target lan-
guage. Thus, its cross-lingual performance cannot be simply
viewed as the upper bound of its CLCD performance. We re-
train the model in CLCD setting as another baseline described
later. For the baselines described below, they are all trained
in the CLCD setting.

ADAN [Chen et al., 2018] exploits adversarial training to
reduce the representation discrepancy between the encoded
source and target embeddings.

MAN-MOE-D is the version of MAN-MOE trained in a
CLCD setting. As this specific model performs N to 1 adap-
tation, it can adapt from multiple source domains from the
same source language to a specific target domain and target
language. In our experiments, MAN-MOE-D utilizes two
source domains from the same source language. For exam-
ple, when the target language and domain is German-Book,



Model German French Japanese

Books DVD Music Avg Books DVD Music Avg Books DVD Music Avg
CL-RL 79.9 77.1 77.3 78.1 78.3 74.8 78.7 77.3 71.1 73.1 74.4 72.9
Bi-PV 79.5 78.6 82.5 80.2 84.3 79.6 80.1 81.3 71.8 75.4 75.5 74.2
CLDFA 84.0 83.1 79.0 82.0 83.4 82.6 83.3 83.1 77.4 80.5 76.5 78.1
MAN-MOE 82.4 78.8 77.2 79.5 81.1 84.3 80.9 82.1 62.8 69.1 72.6 68.2
ADAN 82.7 77.1 79.2 79.6 75.9 75.2 73.8 74.9 72.5 72.3 74.3 73.0
MAN-MOE-D 82.8 80.1 81.6 81.5 83.0 85.5 82.0 83.5 70.5 76.0 70.8 72.4
Multi-BPE 51.0 53.4 53.0 52.5 50.5 51.4 51.1 51.0 50.0 49.8 50.0 49.9
DLM 52.1 53.7 53.3 53.0 57.4 51.5 55.2 54.7 52.8 51.5 50.8 51.7
XLM 80.4 84.9 79.3 81.5 86.4 86.3 83.2 85.3 81.7 81.6 84.1 82.5
XLM-UFD 89.2 86.4 88.8 88.1 89.5 89.4 89.1 89.3 83.8 84.5 85.2 84.5
XLM* 86.3 81.2 84.5 84.0 90.6 86.9 87.6 88.4 82.9 85.0 87.0 85.0

Table 2: Overall comparison of classification accuracy between our proposed model and baseline models. The upper part refers to the
accuracy reported in previous studies in a cross-lingual setting while the middle part refers to our implemented models trained in a CLCD
setting. XLM* denotes the XLLM model trained on source language target domain labeled data. We report the average values of three runs.

MAN-MOE-D takes labeled set from both English-DVD and
English-Music at training phase.

Multi-BPE combines the pretrained multilingual byte-pair
embeddings in 275 languages [Heinzerling and Strube, 2018]
2 with the task-specific classifier used in our proposed model
to perform CLCD adaptation. This model is used to calibrate
the performance of the subword embeddings shared across
multiple languages.

DLM is a pretrained domain-specific language model® im-
plemented with the code of XLM [Lample and Conneau,
20191 *. It employs the pretrained multilingual byte-pair em-
beddsings as the initialized representations of input texts to
mitigate the gap between the source language and the target
languages. This model is presented for studying the effect of
leveraging large scale domain-specific unlabeled text.

XLM refers to the model structure where we simply add a
feedforward layer with softmax activation as the output layer
on top of pretrained XLM [Conneau ef al., 2019].

4.3 Training Details

The hidden dimension of XLLM is 1024. The input and out-
put dimensions of the feedforward layers in both F and F;
are 1024. The discriminator of T, T, , and Twp share the
same model structure as suggested in previous work [Hjelm et
al., 2019], i.e., the discriminator consists of two feedforward
layers with ReLU activation. The input and output dimen-
sions of the first feedforward layer in the discriminator are
2048 and 1024. The input and output dimensions of the sec-
ond feedforward layer are 1024 and 1. The input dimension
of the single-layer task-specific classifiers is 1024. All train-
able parameters are initialised from an uniform distribution
[-0.1,0.1].

We utilize 100 labeled data in the target language and target
domain as the validation set, which is used for hyperparame-
ter tuning and model selection during training. The hyperpa-
rameters are tuned on the validation set of a specific source-
target pair, and are then fixed in all experiments of XLM-

“https://nlp.h-its.org/bpemb/multi/
3trained with the datasets presented in Table 1
*https://github.com/facebookresearch/XLM

UFD. Specifically, both UFD and the task-specific module
are optimized by Adam [Kingma and Ba, 2014] with a learn-
ing rate of 1 x 10~%. The batch size of training UFD and the
task-specific module are set to 16 and 8, respectively. The
weights «, 3, v in Equation (6) are set to 1, 0.3, and 1, re-
spectively. During training, the model that achieves the best
performance (lowest loss) on the validation set is saved for
evaluation purpose.

5 Results

Table 2 presents the model comparison results and Table 3
shows the results of different ablation tests on XLM-UFD.
Classification accuracy is used as the evaluation metric.

5.1 Model Comparison

In Table 2, the top 4 models are trained in a cross-lingual
setting, and the middle 6 models are trained in a CLCD set-
ting. We repeat the experiment on each source-target pair for
3 times with different random seeds and record the average
result on each pair. Each reported result for models trained
in CLCD setting is the average result of the adaption perfor-
mance from two source domains in English. For example, a
result under German-Book is the average of adaption accura-
cies from English-DVD and English-Music.

We make the following observations from Table 2. (1)
XLM-UFD achieves significantly better results over all base-
lines across all settings. It even substantially outperforms
baselines trained in a cross-lingual setting with parallel text
from source and target languages such as CLDFA, which is
a much less challenging setting. (2) One interesting find-
ing is that MAN-MOE-D performs better than MAN-MOE.
One possible reason is that MAN-MOE involves multiple
source language while invariant features shared by multi-
ple languages might be too sparse to maintain enough in-
formation for extracting task-specific features. (3) Among
the pretrained models, the multilingual byte pair embeddings
(Multi-BPE) only achieves low performances. With the en-
hancement of large scale domain-specific unlabeled text, the
domain-specific language model (DLM) taking the multilin-
gual byte pair embeddings as inputs obtains observable per-
formance gains but still has a large room for improvement.



Settines \ German | French | Japanese
8 | Books DVD Music Avg [[ Books DVD  Music Avg || Books DVD  Music  Avg |
[Basic Model [XLM___ || 804 849 793 815 || 864 83 832 83 || 8.7 816 84l 825 |
Max 84.5 82.0 81.9 82.8 81.1 83.2 81.8 82.0 81.8 80.6 81.5 81.3
Model Ablation Max-Min 88.4 85.9 87.3 87.2 88.0 88.4 88.3 88.2 84.4 83.3 85.0 84.2
2Max-Min 89.2 86.4 88.8 88.1 89.5 89.4 89.1 89.3 83.8 84.5 85.2 84.5
1K*3 87.2 854 86.4 86.4 88.6 88.3 87.0 88.0 78.9 80.0 81.0 80.0
2K*3 86.7 84.4 85.6 85.6 87.9 88.1 83.8 86.6 84.2 83.4 84.4 84.0
Unlabeled Data Sizes | 5K*3 89.0 86.0 86.9 87.4 87.8 89.1 86.9 87.9 83.0 83.8 82.2 82.9
10K*3 88.5 86.3 88.1 87.6 88.8 88.8 88.3 88.6 83.7 84.4 85.5 84.5
50K*3 89.2 86.4 88.8 88.1 89.5 89.4 89.1 89.3 83.8 84.5 85.2 84.5

Table 3: Classification accuracy of ablations and using different sizes of unlabeled target domain data in the source language (i.e. English).

Benefited from the large scale training data and network size,
XLM is able to perform better than the state-of-the-art task-
specific models on French and Japanese such as CLDFA and
MAN-MOE-D. When combined with the proposed UFD, sig-
nificant performance gains are observed on XLM. This points
out that domain adaptation is necessary for pretrained multi-
lingual language models when applied to a specific task.

5.2 Ablation Study

To learn the effect of each module of XLM-UFD, we conduct
a thorough model ablation. As presented in Table 3, we first
examine the domain-invariant feature extractor along with
the MI maximization between the language-invariant features
from the multilingual embedding module and the extracted
domain-invariant features, namely Max-MI. Classification
accuracy shows that Max-MI with only domain-invariant fea-
tures enhances the performance of XLM on German and
leads to performance decreasing on French and Japanese.
Through supplementing the domain-specific feature extrac-
tor and the Min-MI objective (i.e. £,), Max-Min-MI has a
noticeable performance increase over Max-MI and outper-
forms XLM, which confirms that the unsupervised feature
decomposition can support the dynamical domain-specific
and domain-invariant feature combination and prompt the
task performance. With the enhancement of the intermediate
Max-MI objective (i.e. L) between the intermediate features
and output of domain-invariant feature extractor, 2Max-Min-
MI achieves significant performance improvement over Max-
MI, which is used as the main model for conducting other
comparison and ablation. We also experiment with the in-
fluence of different sizes of unlabeled data of the source lan-
guage. It can be seen from Table 3 that, 5K*3 unlabeled raw
text already yields a very promising performance. Further
increasing the unlabeled raw text will continuously improve
the model performance on French and German. When the
raw data size is larger than 10K*3, the performance improve-
ment on Japanese becomes marginal and the performance on
German and French still increase.

5.3 Visualization

To intuitively learn the process of domain-invariant feature
and domain-specific feature extraction, we also give the t-
SNE plots [Maaten and Hinton, 2008] of the UFD module
at the tenth epoch. Specifically, we sample five thousand
raw texts from the source domain and target language. Each

Epoch=10 . Epoch=10

(a) Domain-invariant & domain-specific ~ (b) Domain-invariant & language-invariant
Figure 2: t-SNE plots, where the left figure refers to domain-
invariant features and domain-specific features of input texts, and
the right figure corresponds to domain-invariant features of input
texts and language-invariant representations from XLM.

raw text is processed by XLM, and the following domain-
invariant feature extractor and domain-specific feature extrac-
tor, respectively. As presented in Figure 2, each data point
in the plots represents an input text. We can observe from
the left plot that the domain-invariant features and domain-
specific features of input texts have a clear border that can
be distinguished, which suggests that the mutual information
minimization can force the two extractors exclusively extract
domain-invariant and domain-specific features. The right plot
in Figure 2 further demonstrates that domain-invariant fea-
tures and language-invariant representations from XLM are
partly entangled, which can be explained by the fact that max-
imizing mutual information between the language-invariant
representations and the extracted domain-invariant features
can force the domain-invariant feature extractor to pass the in-
formation that has certain shared attributes with the language-
invariant representations.

6 Conclusions and Future Work

In this paper, we propose a simple but effective unsupervised
feature decomposition model to extend the cross-lingual
model pretrained on over one hundred languages and ter-
abytes texts to the cross-domain scenario. Through introduc-
ing the mutual information maximization and minimization
objectives in representation learning, our proposed model can
automatically extract domain-invariant and domain-specific
features from the language-invariant cross-lingual space with
only a small in-domain unlabeled dataset in the source lan-
guage as the training data. Experimental results indicate that,



with the enhancement of our proposed model, the state-of-
the-art cross-lingual language model XLLM achieves contin-
uous gains, which leads to the new SOTA on the Amazon
review benchmark dataset. In the future, we will explore the
effect of our proposed unsupervised feature decomposition
model on other pretrained models and downstream tasks.
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